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Abstract 

To understand how air pollution affects human health, mapping the concentration of ambient air 

pollutants is indispensable. In this study, we collected the air pollutant data of particulate matter (PM10 

and PM2.5) at 60 monitoring locations in central Massachusetts. We employed the “location-allocation” 

approach to optimize the spatial configuration of these monitoring stations. To characterize temporal 

variation, each location was measured twice, one during peak hours and one during non-peak. A 

DustScan Scout Model 3020 Aerosol Monitor and a Garmin GPS tracker were used to obtain 

measurements and geographic locations. After collecting data from the field, kriging methods were used 

to generate concentration maps. We successfully created concentration maps for PM2.5 and PM10, while 

suffering from the issues of insufficient sensor sensitivity, suboptimal allocation of monitoring locations 

due to previous data availability, and the neglect of small-scale variation. Although the highest 

concentrations in the results never exceeded the NAAQS, further studies on the actual effect of 

pollution on human health are needed. 

Introduction 

Most cities in Massachusetts have been going through the process of post-industrialization in the 

past century. Numerous abandoned industrial buildings were left when manufacturers moved out, while 

the descendants of minority laborers, who are relatively vulnerable to environmental hazards, still live in 

this area. It is vital to understand how residents in this area are affected by environmental pollution. 

Thus, we proposed a project “Exploring the Association between Low Birth Weight and Exposure to Air 

Pollution in Massachusetts” as a case study on the association between LBW and six pollutants (CO, lead, 

NO2, PM10, PM2.5, O3 and SO2) on EPA’s National Ambient Air Quality Standards (NAAQS) in 

Massachusetts (Table 1). 

Table 1 Six Pollutants Listed on the National Ambient Air Quality Standards (NAAQS) 

Pollutant 
Primary/ 

Secondary 
Averaging 

Time 
 

Level 
 

Form 

Carbon Monoxide 
 

primary 

8-hour 9 ppm Not to be exceeded more than 
once per year 1-hour 35 ppm 

Lead 
primary and 
secondary 

Rolling 3 
month average 

0.15 
μg/m3 (1) 

Not to be exceeded 
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Nitrogen Dioxide 

primary 1-hour 100 ppb 
98th percentile, averaged over 3 

years 

primary and 
secondary 

Annual 
53 ppb 

(2) 
Annual Mean 

Ozone 
primary and 
secondary 

8-hour 
0.075 

ppm (3) 

Annual fourth-highest daily 
maximum 8-hr concentration, 

averaged over 3 years 

Particle 
Pollution 

PM2.5 
primary and 
secondary 

Annual 
15 

μg/m3 
annual mean, averaged over 3 

years 

24-hour 
35 

μg/m3 
98th percentile, averaged over 3 

years 

PM10 
primary and 
secondary 

24-hour 
150 

μg/m3 

Not to be exceeded more than 
once per year on average over 3 

years 

Sulfur Dioxide 

primary 1-hour 
75 ppb 

(4) 

99th percentile of 1-hour daily 
maximum concentrations, 

averaged over 3 years 

secondary 3-hour 0.5 ppm 
Not to be exceeded more than 

once per year 
(1) Final rule signed October 15, 2008.  The 1978 lead standard (1.5 µg/m

3
 as a quarterly average) remains in effect until one 

year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978, the 1978 
standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved. 
(2) The official level of the annual NO2 standard is 0.053 ppm, equal to 53 ppb, which is shown here for the purpose of clearer 
comparison to the 1-hour standard. 
(3) Final rule signed March 12, 2008.  The 1997 ozone standard (0.08 ppm, annual fourth-highest daily maximum 8-hour 
concentration, averaged over 3 years) and related implementation rules remain in place.  In 1997, EPA revoked the 1-hour 
ozone standard (0.12 ppm, not to be exceeded more than once per year) in all areas, although some areas have continued 
obligations under that standard (“anti-backsliding”).  The 1-hour ozone standard is attained when the expected number of days 
per calendar year with maximum hourly average concentrations above 0.12 ppm is less than or equal to 1. 
(4) Final rule signed June 2, 2010.  The 1971 annual and 24-hour SO2 standards were revoked in that same 
rulemaking.  However, these standards remain in effect until one year after an area is designated for the 2010 standard, except 
in areas designated nonattainment for the 1971 standards, where the 1971 standards remain in effect until implementation 
plans to attain or maintain the 2010 standard are approved. 

 

This project has been going for one year. In the past year, we completed both descriptive and 

multivariate statistic analysis of the LBW dataset from the Massachusetts Department of Public Health 

(MassDPH). This dataset recorded 623,844 births from 2000 to 2007 with variables including infant’s 

birth weight, sex and plurality as well as the mother’s age, marital status, race, education, gestational 

age and diseases. We also applied a statistic, geographically weighted logistic regression (GWLR), to 

characterize the spatial heterogeneity of the association between LBW and air pollutant concentration. 

Those results were summarized in our paper “Exploring the Association between Low Birth Weight and 

Exposure to Lead Using Geographically Weighted Logistic Regression”. 

The biggest problem in the previous project is the lack of air pollutant concentration monitoring 

data in Massachusetts. In previous studies, two approaches have been employed to obtain the air 

pollutant concentration or exposure data within an area: modeling the dispersion from pollutant 

sources, or interpolating a smooth surface based on point observations. Two results of the former 
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provided by the EPA are the National Air Toxics Assessment (NATA) and Risk-Screening Environmental 

Indicators (RSEI) model. Among six chemicals, only Diesel Particulate Matter (DPM) is available in the 

NATA, and ozone and lead are available in the RSEI. Their concentration values are estimated based on 

modeling instead of direct observations. The latter approach generates a smooth surface of air pollution 

concentration based on observations. However, currently there are only 28 unevenly located monitoring 

sites in Massachusetts (Figure 1). This number is insufficient for generation of a concentration surface 

characterizing the spatial heterogeneity within the state. 

 

Figure 1 Configuration of the Massachusetts 2011 Monitoring Network 

Therefore, we realized that collecting air pollution concentration data from the field is needed. We 

propose this project to obtain observations using a mobile monitoring station, which is composed of 

chemical monitoring equipment and a GPS unit installed on a car. These observations will be employed 

to interpolate an air pollutant concentration surface for each chemical. Although the ultimate goal is to 

measure six ambient air pollutants listed on the National Ambient Air Quality Standards (NAAQS) for the 

entire Commonwealth of Massachusetts, in this project we only focused on central Massachusetts. Only 

PM2.5 and PM10 were completely measured and analyzed, while the experience of this study would 

enable us to explore the greater area of Massachusetts, as well as include other pollutants in the 

experiment. 

Objectives 

The primary objective of this project is to obtain the concentration observations of particulate 

matters (PM2.5 and PM10). As mentioned above, EPA’s air pollution models (NATA and RSEI) only 

estimate the concentrations of diesel particulate matter (DPM), lead and ozone. Most of the EPA air 

monitoring sites provides data for all of the six NAAQS chemicals including PM2.5 and PM10, whereas the 



4 
 

number of existing monitoring stations is not enough to interpolate a concentration surface, by which 

the concentration at any location in the state could be estimated. Only by collecting data from the field 

could we obtain more observations to generate the surface. Those observations were obtained at the 

locations and times we choose, which were systematically distributed within the state. A concentration 

surface was produced using interpolation tools in GIS for each chemical we explored. Using this surface 

with geocoded addresses of individuals, we were able to identify the amount of chemical concentration 

that each mother and baby exposed to. 

The secondary goal of this project is to suggest candidate locations for additional ambient air 

pollution monitoring stations. When distributing our monitoring sites, we identified the locations that 

have a higher demand for an additional monitoring site. The demand was based on the spatial variation 

and dependency of concentrations across the study area. If any new temporary or permanent 

monitoring station is to be added to this area in the future, the locations we identified could be 

considered as the priority. 

Methodology 

Experiment Design 

We measured pollutant concentrations at 60 locations within fourteen cities and towns (Auburn, 

Boylston, Clinton, Fitchberg, Grafton, Holden, Lancaster, Leominster, Lunenburg, Millbury, Shrewsbury, 

Sterling, West Boylston, Worcester; refer to Figure 2) around Worcester. Each location was measured 

twice. The configuration was decided by the spatial variation of concentrations from previously modeled 

data. Two times were chosen based on the temporal trend from previous monitoring data. The 

concentrations of PM2.5 and PM10 in the air were measured in the experiment. The instruments that 

were used, as well as the approach to decide locations and times of measurements, are specified below. 
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Figure 2 Location of 14 cities and towns included in the study area 

1. Instrument 

A DustScan Scout Model 3020 Aerosol Monitor (Figure 3) was employed to measure concentrations. 

Measurement ranges and correspondent errors are shown in Table 2. Since there was only one 

DustScan 3020 available to us, PM2.5 and PM10 were measured by the same sensor with two different 

filters. Each type of PM was measured for one minute at one location at a time.  

 

Figure 3 DustScan Scout Model 3020 Aerosel Monitor 
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Table 2 Measured pollutants and correspondent instruments 

Pollutant  Range  Error  Instrument  

PM2.5, PM10  

0-0.5 mg/m³ 
0-1 mg/m³ 
0-10 mg/m³ 
0-99.999 mg/m³  

0.002 mg/m³ 
0.002 mg/m³ 
0.010 mg/m³ 
0.100 mg/m³  

DustScan Scout Model 3020 Aerosol Monitor  

 

A Garmin GPS tracker was used to record the location for each measurement. This GPS tracker is 

able to constantly capture our real-time locations. By relating the time-stamps of these locations to the 

time-stamps on DustScan, we could easily get accurate coordinates for each measurement. This GPS 

tracker was also connected to a laptop. Google Earth was on the laptop with our real-time tracklogs, 

satellite imagery and marks of monitoring locations. This set-up enabled us to visualize our location on 

Google Earth during field trips (Figure 4). 

 

Figure 4 The sensor, laptop and GPS tracker were used together to provide spatial and pollution data 
at the same time 
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2. Spatial Optimization 

Previous studies used the concept of "resource allocation" to decide where to put monitoring sites. 

Based on this concept, spatial variation is regarded as the demand for measurement. There is a higher 

demand at locations where the spatial variation is greater, and vice versa. In this approach, the process 

of site selection is generally composed of two steps: demand map generation and site allocation. 

In the first step, researchers create a demand surface based on previous data. They calculated the 

spatial variation around each specific location. Greater variations indicate a greater demand for 

monitoring site. Kanaroglou et al. (2005) and Su et al. (2007) calculated total semivariance within a 

specific distance from each location and used this value as the "demand" at that location. Kumer et al. 

(2009) claimed that Kanaroglou et al. failed to consider spatial autocorrelation. They suggested the 

exclusion of variation within the range from each location (i.e. the range on semivariogram) can 

successfully avoid redundant site selection due to spatial autocorrelation. 

In this study, we do not have a raster-based monitoring map available. We got the modeling data 

from NATA 2005, which were based on census tracts (Figure 5). Unlike three studies mentioned above, 

we cannot deal with this discrete (vector-based) data with the way they did on raster maps. We treated 

each census tract as an individual object and explore the variation among these objects in study area. In 

total there are 90 tracts. We adopted the approach that Kumer et al. (2009) used, which includes 

variation of each tract with its surrounding tracts while excluding variation within its range of spatial 

autocorrelation. For tract i with concentration zi , the autocorrelation-adjusted spatial variance (σ²) is: 

    
 

∑    
 
   

∑ (     )
 
   

 
     …… Equation 1 

where j is a neighboring tract of i with concentration zj; k is the number of neighbors around i;  i≠j; dij is 

the distance between I and j; hi is the bandwidth for i determined by semivariance;  ij=0 when dij<hi, 

 ij=1 otherwise. 

This "autocorrelation-adjusted" variance is regarded as the demand for monitoring sites of each 

census tract. Considering spatial heterogeneity within our study area, 90 tracts were divided into four 

regions based on their areas and concentration levels. (Figure 6) A bandwidth (hi) was calculated for 

each region and applied to all tracts within that region. 

In the second step, we would like to allocate monitoring sites on this demand surface. Every 

potential location in study area was treated as a "candidate location" and chosen according to specific 

criteria. Kanaroglou et al. (2005) and Su et al. (2007) used the location-allocation tool in Network Analyst 

with the "maximum attendance" option to allocate monitoring site. This tool allowed them to ensure a 

given number of points are situated at locations where they together can capture maximum amount of 

variation. Kumer et al. (2009) used a program they composed to allocate a monitoring site to the 

locations that can characterize most variation within their study area. After the allocation of one site, 

the buffering area within its autocorrelation range was excluded from candidate locations. The next site 
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was then chosen from the remaining locations. The same process until their targeted ratio of variation 

was attained within these monitoring sites. 

In our study, we adopted the approach of Kumer et al. (2009). Each tract was divided into numerous 

200*200m cells. Each cell inherits the demand value from the tract and was regarded as an individual 

candidate location (Figure 7). Those cells inaccessible from road were excluded from the candidate set. 

With the constrain of minimum distance between any two points, which equals the bandwidth (hi), we 

used this process until no more location can be chosen from the study area. 124 representative 

locations were obtained (Figure 8). Then we manually selected 60 locations based on the following 

conditions: within the Worcester and Fitchberg urban areas, we avoided redundant selection of sites 

that cover the same or any nearby communities; within the remaining area, locations were chosen if 

they are closer to town centers while a complete coverage over the study area can be maintained 

(Figure 9). 
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From left to right: 

Figure 5 Diesel particulate matter concentrations from NATA 2005 by census tracts 
Figure 6 Four groups of tract used to determine adaptive bandwidth 

Figure 7 Autocorrelation-adjusted spatial variation (gamma) by census tracts 
Figure 8 Representative locations determined by a computer program 

Figure 9 Manually selected 60 monitoring locations
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Temporal Optimization 

The goal of temporal optimization is to distribute two monitoring times optimally to capture the 

most temporal variation. Each location was only visited twice, one during peak hours and the other 

during non-peak. Since previous PM data were incomplete at the state monitoring station in Worcester, 

based on previous daily carbon monoxide monitoring data in April, we identified peak/non-peak hours 

as the period when the concentration is above/below daily average (Figure 10). To prevent an overlap 

between peak and non-peak, a buffer period was defined as the period when the concentration is less 

than 0.5 standard deviations above/below the daily average. No measurement was taken during the 

buffer period. Thus, peak hours are from 5am to 8am and non-peak hours are from 9am to 1:30pm. 

 

Figure 10 The temporal trend of CO concentration at Worcester in April 

Map Production 

We used the Geostatistical Analyst in ESRI ArcGIS 10.0 to create concentration maps. Four datasets 

were used to create four maps: PM2.5 during peak hours, PM2.5 during non-peak hours, PM10 during peak 

hours, and PM10 during non-peak hours. Each input dataset contains all point-based measurements we 

obtained (60 for non-peak and 59 for non-peak). We interpolated a concentration surface layer from 

these point-based observations. 
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In the Geostatistical Analyst, we first examined the normality of each dataset using a histogram and 

a normal Q-Q plot. The histogram and normal Q-Q plot also helped us indentify outliers. After this 

examination, only one measurement of PM10 during non-peak was excluded since it is quite deviant 

from other measurements. 

Before creating kriging maps, the tool is able to examine if there is a global trend in study area. If so, 

it is recommended to get rid of the trend before examining semivariogram to explore spatial 

dependency. We chose global trend removal models that can minimize prediction errors in our results. 

Afterward, semivariogram was employed to decide which regression model would be used to describe 

the relationship between distance and semivariance. In addition, we got to decide if an anisotropic 

model characterizes this relationship better than an isotropic model (i.e. which yields smaller prediction 

errors). If an anisotropic was chosen, regression models with different parameters were applied to 

different directions. We found that anisotropic models are more suitable for the maps during non-peak 

hours. 

After the model and parameters were determined, the tool also automatically offered a cross-

validation report. This report indicated prediction errors in our models. These models, parameters and 

the results of cross-validation were shown in Table 3 and Appendix 2. 

Table 3 Model Summary and Cross-Validation Results 

Data 
PM2.5 
(Peak) 

PM10 
(Peak) 

PM2.5 
(Non-Peak) 

PM10 
(Non-Peak) 

Sample Size 59 59 60 59 

Model Summary (unit of input data: mg/m³) 

Trend 
Removal 

Type 
Local 

Polynomial 
Interpolation 

Local 
Polynomial 

Interpolation 

Local Polynomial 
Interpolation 

Local 
Polynomial 

Interpolation 

Power 2 2 2 3 

Kriging 
Model 

Type Gaussian Stable Exponential Spherical 

Nugget 6.74·10⁻⁷ 1.36·10⁻⁶ 3.07·10⁻⁷ 4.58·10⁻⁷ 

Parameter N/A 0.2 N/A N/A 

Range 3228 56640 14000 10000 

Partial Sill 1.46·10⁻⁶ 0 7.80·10⁻⁷ 5.18·10⁻⁷ 

Function 0.346x+0.001 0.353x+0.002 -677.144x+1.326 0.379x+0.001 

Anisotropy 
Minor Range N/A N/A 4685 3386 

Direction N/A N/A 95⁰ 107⁰ 

      Results of Cross Validation – Prediction Error (unit of input data: mg/m³) 

Mean 3.45·10⁻⁶ 2.19·10⁻⁵ -5.74·10⁻⁶ -6.23·10⁻⁶ 

Root-Mean-Square 0.001253 0.001208 0.000957 0.000912 

Mean Standardized 0.005398 0.017915 -0.001899 -0.002566 

RMS Standardized 0.865121 1.006222 0.988293 0.946582 

Ave. Std. Error 0.001455 0.001204 0.000976 0.000976 
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Results 

 Figure 11 demonstrates four concentration maps we made by spatial interpolation. Several high 

concentrations of PM2.5 were found during peak hours. These hot spots are located at the Main South 

area in Worcester, I-90 near Grafton, and the center of West Boylston. Concentrations at the former two 

exceeded 5 μg/m³. As for PM10, no single hot spot was observed, while the concentration increased 

gradually from Worcester to the southern boundary of Auburn. On the southern boundary of Auburn, 

concentrations higher than 5 μg/m³ were observed. During non-peak hours, both PM2.5 and PM10 

formed two strips of high concentration, one stretched from Holden to West Boylston and another from 

Worcester to Grafton. The patterns of them are fairly similar. Monitoring locations within these two 

strips include several locations near I-190, as well as a location near the intersection at Holden and 

another near West Boylston. Maximum concentrations in these two strips are slightly above 4 μg/m³. 

These maps also enabled us to compare the concentration of any location to the NAAQS in Table 1. 

The NAAQS specifies the following exposure as hazardous: annual average 15 μg/m³ or 24-hour average 

35 μg/m³ of PM2.5, as well as 24-hour average 150 μg/m³ of PM10. Based on our measurements and 

analyses, no observation was comparable to the EPA standard. Even the maximum concentrations we 

observed during peak hours did not exceed these standards. 

Through the process of model optimization, the cross-validation results of kriging yield average 

standardized prediction errors around or less than 0.001 mg/m³ (1 μg/m³) for these four kriging maps 

(Table 3). This value is even smaller than the measurement errors of the DustScan. Numerical 

distributions of these errors are very likely to be Gaussian (Appendix 2). Looking at the spatial 

distribution of prediction errors (Figure 12), we found that PM2.5 of non-peak hours, PM10 of peak and 

non-peak hours yield relatively small amount of errors, which are less than 0.001 mg/m³ (1 μg/m³). 

Apparently, PM2.5 of peak hours has greater errors in most of the study area. Only areas near monitoring 

sites yield smaller prediction errors. Since the spatial patterns of non-peak hours were more spread out, 

anisotropic models are fairly suitable to map non-peak concentrations (Table 3). 

The sources of error in this study include: (1) Process errors associated with experiment design, 

including short sampling period at one location, limited number of monitoring sites and times, and 

fluctuation in temperature. Because we were not able to include all the 127 representative locations 

into our experiment, some spatial variations were consequently missed by our experiment. The same 

issue also exists in the process of capturing temporal variation. The effects of temperature on 

measurements were also neglected in this study. (2) Measurement errors associated with the sensitivity 

and accuracy of the DustScan and Garmin GPS. The accuracy of DustScan is 0.002 mg/m³ (2 μg/m³) in 

our experiment. In other words, the measurement errors could be as high as 100% of the measurements 

when the measured value is 0.002 mg/m³ or less. (3) Analysis errors that came from the kriging method 

we chose. Based on the cross-validation results, they are around or less than 0.001 mg/m³ (1 μg/m³).
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Figure 11 Results of Interpolation for PM2.5 (Peak), PM10 (Peak), PM2.5 (Non-Peak) and PM10 (Non-Peak) (from left to right)  
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Figure 12 Spatial Distribution of Prediction Errors of PM2.5 (Peak), PM10 (Peak), PM2.5 (Non-Peak) and PM10 (Non-Peak) (from left to right)  
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Discussion 

In this study, we successfully obtained measurements at 60 locations in our study area. In contrast 

to the state ambient air pollution monitoring network, which contains only one station in downtown 

Worcester near I-190 and Union Station, our monitoring network contains locations in various 

environments. This network is able to better characterize the heterogeneity within our study area. In 

addition, 60 is a statistically large sample site. Such a sample size enables us to examine data with more 

statistical approaches. 

However, this study also suffered from several issues. First and the most problematic, the sensitivity 

of our sensor is insufficient to provide us with more accurate measurements. Although we did obtain 

non-zero measurements and were able to see the difference between low and high values, the 

measurement errors could be as high as 100% of measurements when monitored values are very low. 

Unfortunately, such low values of measurement appeared very frequently in our dataset. Since the 

general concentrations of PMs in the outdoor environment in our study area are pretty close to the 

measurement errors of the sensor, a sensor with higher sensitivity is needed to measure the 

concentrations with a higher accuracy. 

Second, although we adopted the method that Kumar et al. (2009) used to allocate monitoring 

locations while excluding the effects of spatial dependency, there is still a room for optimization. When 

Kanaroglou et al. (2005), Su et al. (2007) and Kumer et al. (2009) employed the location-allocation 

approach to attain similar goals, their input previously monitored data were raster files. In this study, 

however, since no raster data were available to us. NATA 2005 only estimated concentrations based on 

census tracts and block groups. Restricted by data availability, we could only calculate demand values 

tract by tract. Because of this, all candidate locations (i.e. those 200*200m cells mentioned in the Spatial 

Optimization section) in the same census tract would always have the same demand value. When the 

monitoring sites were being allocated, they were actually evenly distributed within a census tract since 

the demands are equal everywhere. Although we successfully allocated monitoring stations to those 

tracts with higher demands, aside from reinforcing a minimum distance between any two locations, we 

did not control the spatial configuration within one single tract. This also resulted in an inappropriate 

allocation of monitoring locations at the edge of some large tracts to the northern and western boarders, 

which might not be the most representative locations in those tracts. 

Third, by allocating 60 monitoring locations in an area of 877 square kilometers (i.e. one location per 

14.6 square kilometers on average), we were not able to characterize small-scale spatial variations, such 

as the variation among a community or the variation among various distances from major highways. At 

the scale of this study, the measurements we obtained could be representative for the overall condition 

within a census tract, while not representative for any single block or residential community within that 

tract. When interpreting the results, it is very important to be aware of the scale we chose. These small-

scale variations might also have brought exaggerations of high concentration values into our data. For 

example, several points we chose are very close to highway intersections. The measurements we got at 

these locations might be much higher than the general condition in nearby areas. Since these small-scale 
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variations were ignored, the results of this project do not imply that the PM concentrations are not 

hazardous in our study area, even if none of our predicted values exceeds the standard.  

To make improvements on air monitoring projects in the future, we suggested that there should be 

a more sensitive sensor available. Many gas sensors at lower prices were designed for indoor exposure. 

The outdoor concentration is often too low for them to measure accurately. In addition, there should be 

a better way to allocate monitoring stations. Ideally a raster-based previously monitored data can be 

employed to create the initial surface. Under some circumstances, there is point-based monitoring data 

at some locations although no raster data available. If the number of these point-based measurements 

can be regarded as a large sample, land-use regression (LUR) can be used to create the raster and thus 

generate the initial surface. If there is no way to obtain or create a raster based on previously monitored 

data, as the case of this study, a new approach to allocating resources based on a vector-based initial 

surface would be needed. From another perspective of location-allocation, regardless using raster or 

vector data, in this study the spatial optimization and temporal optimization were done separately. In 

fact, it is possible to integrate them as a spatiotemporal process. Instead of a “demand surface”, we can 

create a “demand cube” in a three dimensional space composed of two spatial axes and one temporal 

axis. Monitoring location can be allocated in this cube in the way that the most spatiotemporal variation 

within this cube can be characterized. Furthermore, the small-scale variation near any monitoring site 

should be explored. Knowing the small-scale variation would contribute to the understanding of the 

actual concentration that individuals are exposed to. 

Conclusion 

We clearly identified certain areas with higher concentrations, such as areas near major highways 

and intersections. Certain hot spots stood out more during peak hours. The kriging models we employed 

also indicated that anisotropic models are more suitable for non-peak hours. Although the highest 

concentrations in the results never exceeded the NAAQS, the actual human exposure might be quite 

different from our results since our network was not able to characterize small-scale and indoor 

exposure. Further studies on the effect of pollution on human health are needed to verify the 

applicability of the NAAQS. 

References 

1. Environmental Protection Agency (EPA). (2011). National Ambient Air Quality Standards 

(NNAQS). www.epa.gov/air/criteria.html [Retrieved on 4/27/2012] 

2. Environmental Protection Agency (EPA). (2012). Particulate Matter (PM). 

www.epa.gov/pm/index.html [Retrieved on 4/27/2012] 

3. Kanaroglou, P.S. and Jerrett, M. and Morrison, J. and Beckerman, B. and Arain, M.A. and Gilbert, 

N.L. and Brook, J.R. 2005. Establishing an air pollution monitoring network for intra-urban 



17 
 

population exposure assessment: a location-allocation approach. Atmospheric Environment 

39(13): 2399-2409. 

4. Kumar, N. 2009. An optimal spatial sampling design for intra-urban population exposure 

assessment. Atmospheric Environment 43(5): 1153-1155. 

5. Su, J.G. and Larson, T. and Baribeau, A.M. and Brauer, M. and Rensing, M. and Buzzelli, M. and 

others. 2007. Spatial modeling for air pollution monitoring network design: example of 

residential woodsmoke. Journal of the Air & Waste Management Association 57(8): 893-900. 

6. Thermo Electronics Corporation. (2005). Features Sheet: DustScan Model 3020 Aerosol Monitor. 

Acknowledgements 

Prof. Abigail Mechtenberg and Prof. Yelena Ogneva-Himmelberger, for their guidance and support 

of this project; George Perkins Marsh Institute, for funding the project; John V. Carvalho III and Brandon 

Faillace at Apollo Safety Inc., for their technical supports.



18 
 

Appendix 1: The Master Table of Monitoring Results 

ID 
Peak Non-Peak 

Longitude Latitude PM2.5 PM10 Longitude Latitude PM2.5 PM10 

1 -71.792332 42.260089 0.002970 0.006973 -71.793775 42.260087 0.002000 0.009000 

2 -71.820768 42.260602 0.007211 0.004377 -71.820830 42.260581 0.004000 0.004000 

3 -71.787130 42.244589 0.003561 0.004857 -71.787130 42.244589 0.003571 0.004606 

4 -71.801720 42.271745 0.001915 0.002594 -71.801808 42.271623 0.002000 0.001000 

5 -71.694962 42.618956 0.001000 0.001000 -71.695101 42.619085 0.000806 0.000750 

6 -71.677418 42.559862 0.000000 0.001000 -71.677891 42.559865 0.000880 0.001400 

7 -71.875955 42.403013 0.002222 0.001741 -71.875955 42.403013 0.002326 0.001704 

8 -71.919808 42.374853 0.001417 0.001820 -71.919808 42.374853 0.002154 0.002175 

9 -71.828455 42.488312 0.000000 0.003000 -71.828315 42.488331 0.002800 0.003767 

10 -71.729374 42.449893 0.002000 0.003000 -71.729712 42.450191 0.000931 0.001189 

11 -71.792663 42.288951 0.001220 0.001854 -71.792196 42.288905 0.000111 0.000857 

12 -71.769032 42.356024 0.000775 0.003343 -71.769024 42.356026 0.001307 0.001864 

13 -71.710681 42.522457 0.001000 0.002000 -71.710825 42.522604 0.000815 0.000762 

14 -71.652866 42.447065 - - -71.652866 42.447065 0.000714 0.001289 

15 -71.834613 42.637914 0.001000 0.001000 -71.834552 42.637658 0.000970 0.000654 

16 -71.808591 42.597745 0.000000 0.001000 -71.808384 42.597788 0.000577 0.000615 

17 -71.859279 42.294451 0.002814 0.002097 -71.859312 42.294607 0.002000 0.002000 

18 -71.815891 42.244540 0.006000 0.003000 -71.815891 42.244540 0.003000 0.001000 

19 -71.712374 42.352837 0.002688 0.001806 -71.712516 42.353622 0.000909 0.001220 

20 -71.746394 42.318126 0.000486 0.001821 -71.746545 42.318140 0.001000 0.000947 

21 -71.668781 42.182869 0.005000 0.005000 -71.668781 42.182869 0.002000 0.002000 

22 -71.832528 42.574127 0.000059 0.000818 -71.832735 42.574165 0.000030 0.001462 

23 -71.814283 42.294043 0.000757 0.000781 -71.814233 42.294173 0.001750 0.001944 

24 -71.806023 42.284299 0.000909 0.001417 -71.806886 42.284246 0.002622 0.003083 

25 -71.793572 42.582628 0.000568 0.000000 -71.793670 42.582904 0.000000 0.000833 

26 -71.844320 42.362524 0.001290 0.002222 -71.842861 42.362942 0.002795 0.003585 

27 -71.863699 42.361478 0.001677 0.002366 -71.862924 42.361147 0.003328 0.003589 

28 -71.837768 42.353409 0.002125 0.002205 -71.836628 42.351151 0.003043 0.002886 

29 -71.812172 42.338824 0.003000 0.003769 -71.812159 42.338379 0.002704 0.002738 

30 -71.818713 42.326644 0.002397 0.002277 -71.818713 42.326644 0.001800 0.002257 

31 -71.832119 42.317781 0.001840 0.001320 -71.832119 42.317781 0.001231 0.001750 

32 -71.779436 42.262034 0.000704 0.001421 -71.777665 42.264640 0.003000 0.002000 

33 -71.752945 42.555934 0.002000 0.002000 -71.752768 42.555821 0.001375 0.002694 

34 -71.649795 42.243919 0.003000 0.002000 -71.649795 42.243919 0.002000 0.002000 

35 -71.706789 42.225258 0.005000 0.005000 -71.706789 42.225258 0.004000 0.002000 

36 -71.808323 42.191041 0.003618 0.004093 -71.808298 42.191339 0.002000 0.002000 

37 -71.752025 42.192998 0.002000 0.003000 -71.752025 42.192998 0.002000 0.003000 

38 -71.781149 42.171039 0.002000 0.003000 -71.781149 42.171039 0.004000 0.002000 

39 -71.862137 42.240194 0.003343 0.003194 -71.862031 42.240056 0.003000 0.002000 
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40 -71.753502 42.263490 0.000778 0.001520 -71.753647 42.263649 0.002000 0.003000 

41 -71.750086 42.250210 0.000949 0.001449 -71.750069 42.250459 0.004000 0.004000 

42 -71.786564 42.370241 0.003794 0.000767 -71.785253 42.368643 0.004140 0.003308 

43 -71.800134 42.347170 0.003610 0.004447 -71.800134 42.347170 0.003127 0.003309 

44 -71.780786 42.334473 0.001426 0.002182 -71.780911 42.334565 0.000933 0.001975 

45 -71.788337 42.314604 0.001250 0.000957 -71.787619 42.314802 0.001083 0.000800 

46 -71.855256 42.272736 0.002841 0.002833 -71.855098 42.272934 0.002000 0.002000 

47 -71.857580 42.253093 0.001860 0.003450 -71.857809 42.253197 0.002000 0.002000 

48 -71.818031 42.275810 0.000767 0.000875 -71.818031 42.275810 0.001000 0.002000 

49 -71.843320 42.226249 0.003639 0.004520 -71.843118 42.225999 0.001000 0.003000 

50 -71.874685 42.213589 0.001750 0.003256 -71.874685 42.213589 0.003600 0.003957 

51 -71.850124 42.199926 0.004333 0.004857 -71.849988 42.199878 0.002000 0.003000 

52 -71.821075 42.230195 0.002700 0.004595 -71.820956 42.230133 0.002000 0.002000 

53 -71.693581 42.313251 0.000886 0.002250 -71.693723 42.313340 0.000927 0.000960 

54 -71.769557 42.539739 0.001000 0.001000 -71.769758 42.540266 0.000000 0.001182 

55 -71.773451 42.302543 0.001415 0.001111 -71.772800 42.301943 0.000935 0.001171 

56 -71.743883 42.282457 0.001667 0.000957 -71.753587 42.282469 0.000947 0.000862 

57 -71.764872 42.271028 0.000880 0.002143 -71.764621 42.271299 0.001000 0.002000 

58 -71.860373 42.168772 0.001500 0.003848 -71.860412 42.168878 0.002000 0.003000 

59 -71.724192 42.276575 0.001133 0.001480 -71.724090 42.276672 0.000756 0.000333 

60 -71.795902 42.221784 0.002000 0.004000 -71.795902 42.221784 0.002000 0.002000 
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Appendix 2: Results of Cross-Validation (charts) 

 

PM2.5, Peak  
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PM10, Peak 
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PM2.5, Non-Peak 

 

  



23 
 

 

PM10, Non-Peak 

 


